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Estimating life history traits of bacterial communities from metage-
nomes is an increasingly common practice in microbial ecology 
research1–4. Contributing to this area of inquiry, Piton et al.5 use a global 
dataset of soil metagenomes to describe life history trait dimensions of 
soil bacteria. Our analysis of the same dataset suggests that the genome 
size analysis of Piton et al. may underestimate potential biases intro-
duced by varying proportions of non-bacterial DNA among different 
ecosystem types. We demonstrate how this potential bias could influ-
ence the relationships of this trait with environmental variables, thus 
altering the interpretation of the identified trait dimensions.

Some of the life history traits of Piton et al., for example, aver-
age genome size (AGS), were estimated using the full metagenomes 
from each sample, with the reasoning that the metagenomes mostly 
represent bacteria as <2% of reads were annotated as eukaryotic5. We 
agree that only a small proportion of the sequences can be annotated 
as eukaryotic, but this does not imply that eukaryotic sequences are 
negligible or that the proportion of non-bacterial DNA is constant 
among ecosystems. As is the case in many (if not all) soil metagenome 
studies, the majority of sequences in this dataset cannot be classi-
fied at all (Extended Data Fig. 1a), and only 20–50% of the sequences 
from the metagenomes could be identified as bacterial6 (Fig. 1a). 
It is likely that much of this unclassified DNA with unknown func-
tion, that is, microbial ‘dark matter’7, is, in fact, bacterial in origin, 
but some unknown proportion will also be eukaryotic or viral DNA. 
The presence of non-bacterial DNA is perhaps a minor concern if it is 
present in similar proportions across samples. This assumption may 
be valid in studies within a particular ecosystem but may be prob-
lematic in a global multi-ecosystem study such as this one. Indeed, 
we found systematic variation in the percentage of reads classified as 
bacteria versus eukaryotic, as well as the percentage of unclassified 
reads, among different ecosystems with different soil pH (Fig. 1 and 
Extended Data Fig. 1a). Specifically, low-pH soils (for example, forest 
soils) had higher lower proportions of reads classified as bacterial 
and higher proportions of reads classified as eukaryotic (Fig. 1 and  

Extended Data Fig. 1b). This is not surprising, as acidic soils are known 
to host larger biomass of microbial eukaryotes, for example, fungi8. 
The greater relative abundance of eukaryotic reads in the acidic soils 
would also explain the greater proportions of unclassified reads in 
those soils given the disproportionately poor annotation of eukary-
otes in metagenomic analyses9–11. Overall, while we do not know the 
exact proportion of non-bacterial DNA in the metagenomes, we sus-
pect that it is higher than has been reported by the authors and, criti-
cally, that the non-bacterial proportion varies among ecosystem types. 
It should be noted, however, that our method of classifying reads likely 
has some bias, for example, against particular bacterial taxa, life his-
tory groups, genome regions and/or ecosystem types, although the 
degree of bias is difficult to assess. The taxonomic annotation method 
appears to be generally effective, however, as 76% of the genome 
equivalents identified in the full metagenomes were recovered in 
the metagenomic reads identified as bacterial (hereafter, ‘bacterial’ 
metagenomes) on average (Extended Data Fig. 1c).

To investigate potential confounding influences of non-bacterial 
DNA, we repeated some of the authors’ analyses using both the full 
metagenomes and the bacterial metagenomes. Ideally, the results from 
the full metagenomes would be confirmed by analysing the fraction 
of the metagenomes that can confidently be identified as bacterial. 
We focus on AGS, as this was the strongest contributor to the authors’ 
first trait dimension, which, in turn, was strongly related to soil pH5. In 
the full metagenomes, AGS ranged from ~5 to 10 Mb and were strongly 
negatively correlated with pH (Fig. 2a). These AGS values would be 
very large for community averages and are all larger than the previ-
ously reported 3.7 Mb average for terrestrial bacteria12. By contrast, 
the putative bacterial metagenomes had smaller AGS ranging from  
~2.5 to 4.2 Mb and were only very weakly correlated with soil  
pH (Fig. 2b). This discrepancy is not likely due to bias against large 
genomes in the bacterial metagenomes given that well-characterized 
isolates that are better represented in sequence databases tend 
to have larger genomes12. A more likely explanation is that the full 
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Fig. 1 | Evidence of varying proportions of non-bacterial DNA in soil 
metagenomes from different ecosystems. a, The percentage of sequence reads 
identified as bacterial as a function of soil pH. b, The percentage sequence reads 
identified as eukaryotic as a function of soil pH. Classification of sequence reads 

was performed with kraken2 with the Refseq genomes for bacteria, archaea, 
viruses, fungi and protists as reference databases. On all panels, R2 values and 
best-fit lines are from linear regression, and for all models, P < 0.001.
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Fig. 2 | Evidence that varying proportions of non-bacterial DNA influences 
estimates of bacterial community life history and relationships with 
environmental variables. a,b Community-averaged genome sizes for 
each metagenome in the full metagenomes (a) and the putative bacterial 
metagenomes (b) as a function of soil pH. For a and b, R2 values and best-fit lines 
are from linear regression. c,d, The most important environmental predictors 

(from random forest regression) for AGSs in the full metagenomes (c) and the 
bacterial metagenomes (d). For c and d, blue bars indicate positive effects, 
while red bars indicate negative effects. For c and d, variable importance was 
quantified by determining the increase in model error (mean square error (MSE)) 
after randomly shuffling each candidate predictor across the dataset. NPP, net 
primary productivity; MAP, mean annual precipitation.
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metagenomes are contaminated with non-bacterial sequences to 
varying degrees, which has been previously shown to inflate calcu-
lated AGS13. Supporting this explanation, we found that AGS in the full 
metagenomes were strongly negatively correlated with the percentage 
of reads classified as bacteria (Extended Data Fig. 2a) and positively 
correlated with the ratio of eukaryotic to bacterial reads (Extended 
Data Fig. 2b). Therefore, we suggest that the strong association of 
very large AGS with acidic soils in the full metagenomes is likely an 
artefact of ecosystems with acidic soils having larger proportions of 
non-bacterial DNA.

We were also interested in determining whether biases from 
non-bacterial DNA influenced the identification of environmental 
drivers of AGS. Not surprisingly, for the full metagenomes, soil pH 
was identified as the dominant driver of AGS (Fig. 2c). This, again, is 
likely an artefact of acidic soils simply having larger proportions of 
non-bacterial DNA. By contrast, in the putative bacterial metagenomes, 
soil C and N content emerge as the most important drivers (Fig. 2d). 
Other studies have also observed reduced bacterial AGS and weak-
ened relationships with soil pH when analysing full versus bacterial 
metagenomes1,4. Our conclusion from these results is that inferences 
regarding bacterial AGS derived from full metagenomes can be biased 
by varying proportions of non-bacterial DNA among different ecosys-
tem types. By contrast, other bacterial genomic traits (for example, 16S 
ribosomal RNA gene copy number, GC content) only showed minor 
differences between the full and bacterial metagenomes (Extended 
Data Fig. 3), probably because those calculations are not dependent 
upon the total number of sequences present. While AGS was only one 
of many community traits used in the analysis of Piton et al., it was a key 
trait in delineating the trait dimensions in their analysis—our results  
suggest that this conclusion should be reconsidered.

Our analyses show the pitfalls of inferring bacterial community 
traits from full metagenomes that have varying domain-level taxo-
nomic composition and/or varying proportions of unclassified dark 
matter DNA. Our findings have broad relevance beyond their impli-
cations for Piton et al., as inference of bacterial community traits 
from full soil metagenomes is currently commonplace1–5. While our 
alternative methods are also imperfect, our results do provide evi-
dence that the non-bacterial proportion of metagenomes can bias 
estimates of bacterial community life history traits and their rela-
tionships with environmental variables. We expect that the biases 
present metagenomic analyses will become easier to identify and 
account for over time as reference databases improve. In the mean-
time, we suggest that metagenomic analyses should ‘stress-test’ their 
results by applying multiple analytical approaches to their datasets. An 
additional stress-test approach to complement the method we used 
here would be the removal of annotated eukaryotic reads or contigs 
before analysis4. Observed patterns can also be validated by analysing 
additional datasets or by performing experimental manipulations to 
robustly establish relationships between environmental change and 
metagenomic traits. By following these recommendations, influences 
of confounding factors and subsequent misinterpretations of data 
can be minimized.

Methods
Raw metagenomic sequence reads were downloaded from National 
Center for Biotechnology Information accession number PRJEB18701. 
Raw reads were quality filtered using trimmomatic14 and taxonomy 
assigned to the quality-filtered reads using kraken26 with the Refseq 
genomes for bacteria, archaea, viruses, protists and fungi as reference 
databases. We then generated the putative bacterial metagenomes by 
extracting the sequence reads identified as bacterial in origin (taxid 
‘2’). For both the full metagenomes and the bacterial metagenomes, 
we quantified the number of genome equivalents and the AGS using 
MicrobeCensus (version 1.1.1)13. Full details of our methods can be 
found in the Supplementary Information.
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Extended Data Fig. 1 | Percent of metagenomic reads not classified to any 
taxon (a), percent of reads classified as bacteria between forested and non-
forested ecosystems (b), and percentage of genome equivalents recovered 
in the ‘bacterial’ metagenomes that were found in the full metagenomes (c). 
Classification was done using kraken2 with RefSeq genomes for bacteria, 

archaea, viruses, fungi, and protists as reference databases. Genomes within the 
metagenomes were quantified by determining mean coverage of 30 single-copy 
genes using MicrobeCensus. The R2 value and line of best fit in (a) and (c) are 
from linear regression. Asterisks in (b) indicate significantly higher percentage of 
reads classified as bacterial in non-forested environments (p < 0.001).
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Extended Data Fig. 2 | Average genome size in the full metagenomes as a function of the percentage of reads classified as bacteria (a) and the ratio of eukaryotic to 
bacterial reads (b). R2 values and lines of best fit are from linear regression (both p < 0.001). Average genome sizes were determined using MicrobeCensus.
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Extended Data Fig. 3 | Metagenome GC content in the full (a) and bacterial (b) metagenomes and average 16S rRNA gene copy number in the full (c) and bacterial 
(d) metagenomes as a function of soil pH. R2 values and best-fit lines on (a) and (b) are from linear regression (both p < 0.001). Regression models for 16S gene copy 
number in (c) and (d) were not significant (both p > 0.05).
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